The Blocks Problem
The Blocks Problem |
Background
Many areas of Computer Science use simple, abstract domains for both analytical and empirical studies. For example, an early AI study of planning and robotics (STRIPS) used a block world in which a robot arm performed tasks involving the manipulation of blocks.In this problem you will model a simple block world under certain rules and constraints. Rather than determine how to achieve a specified state, you will ``program'' a robotic arm to respond to a limited set of commands.
The Problem
The problem is to parse a series of commands that instruct a robot arm in how to manipulate blocks that lie on a flat table. Initially there are n blocks on the table (numbered from 0 to n-1) with block bi adjacent to block bi+1 for all as shown in the diagram below:The valid commands for the robot arm that manipulates blocks are:
- move a onto bwhere a and b are block numbers, puts block a onto block b after returning any blocks that are stacked on top of blocks a and bto their initial positions.
- move a over bwhere a and b are block numbers, puts block a onto the top of the stack containing block b, after returning any blocks that are stacked on top of block a to their initial positions.
- pile a onto bwhere a and b are block numbers, moves the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto block b. All blocks on top of block b are moved to their initial positions prior to the pile taking place. The blocks stacked above block a retain their order when moved.
- pile a over bwhere a and b are block numbers, puts the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto the top of the stack containing block b. The blocks stacked above block a retain their original order when moved.
- quitterminates manipulations in the block world.
The Input
The input begins with an integer n on a line by itself representing the number of blocks in the block world. You may assume that 0 < n< 25.The number of blocks is followed by a sequence of block commands, one command per line. Your program should process all commands until the quit command is encountered.
You may assume that all commands will be of the form specified above. There will be no syntactically incorrect commands.
The Output
The output should consist of the final state of the blocks world. Each original block position numbered i ( where n is the number of blocks) should appear followed immediately by a colon. If there is at least a block on it, the colon must be followed by one space, followed by a list of blocks that appear stacked in that position with each block number separated from other block numbers by a space. Don't put any trailing spaces on a line.There should be one line of output for each block position (i.e., n lines of output where n is the integer on the first line of input).
Sample Input
10 move 9 onto 1 move 8 over 1 move 7 over 1 move 6 over 1 pile 8 over 6 pile 8 over 5 move 2 over 1 move 4 over 9 quit
Sample Output
0: 0 1: 1 9 2 4 2: 3: 3 4: 5: 5 8 7 6 6: 7: 8: 9:
--------------------------------------------------------------------------------
//************************************************\\
#include <cstdio> #include <string> #include <vector> #include <iostream> using namespace std; const int maxn = 30; int n; vector<int> pile[maxn]; // 每個pile[i]是一個vector // 找木塊a所在的pile和height,以引用的形式返回 void find_block(int a, int& p, int& h) { for (p = 0; p < n; p++) for (h = 0; h < pile[p].size(); h++) if (pile[p][h] == a) return; } // 把第p堆高度為h的木塊上方的所有木塊移回原位 void clear_above(int p, int h) { for (int i = h + 1; i < pile[p].size(); i++) { int b = pile[p][i]; pile[b].push_back(b); // 把木塊b放回原位 } pile[p].resize(h + 1); // pile只需保留0~h的元素 } // 把第p堆高度h及其上方的木塊全部移動到p2堆的最上方 void pile_onto(int p, int h, int p2) { for (int i = h; i < pile[p].size(); i++) pile[p2].push_back(pile[p][i]); pile[p].resize(h); } void print() { for (int i = 0; i < n; i++) { printf("%d:", i); for (int j = 0; j < pile[i].size(); j++) printf(" %d", pile[i][j]); printf("\n"); } }
int main() {
int a, b; cin >> n; string s1, s2; for (int i = 0; i < n; i++) pile[i].push_back(i); while (cin >> s1 >> a >> s2 >> b) { int pa, pb, ha, hb; find_block(a, pa, ha);//找出位置 find_block(b, pb, hb); if (pa == pb) continue; //非法指令 if (s2 == "onto") clear_above(pb, hb); if (s1 == "move") clear_above(pa, ha); pile_onto(pa, ha, pb); } print(); return 0; }
留言
張貼留言