Problem J: Summing Digits
For a positive integer
n
, let f(n)
denote the sum of the digits of n
when represented in base 10. It is easy to see that the sequence of numbers n, f(n), f(f(n)), f(f(f(n))), ...
eventually becomes a single digit number that repeats forever. Let this single digit be denoted g(n)
.For example, consider
n = 1234567892
. Then:f(n) = 1+2+3+4+5+6+7+8+9+2 = 47 f(f(n)) = 4+7 = 11 f(f(f(n))) = 1+1 = 2Therefore,
g(1234567892) = 2
.Each line of input contains a single positive integer
n
at most 2,000,000,000. For each such integer, you are to output a single line containing g(n)
. Input is terminated by n = 0
which should not be processed.Sample input
2 11 47 1234567892 0
Output for sample input
2 2 2 2
import java.util.*; public class UVA11332 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while (sc.hasNextInt()) { long n = sc.nextInt(); if (n == 0) break; while (n / 10 > 0) { int sum = 0; while (n > 0) { sum += n % 10; n /= 10; } n = sum; } System.out.println(n); } } }
留言
張貼留言