Problem J: Summing Digits

For a positive integer
n, let f(n) denote the sum of the digits of n when represented in base 10. It is easy to see that the sequence of numbers n, f(n), f(f(n)), f(f(f(n))), ... eventually becomes a single digit number that repeats forever. Let this single digit be denoted g(n).For example, consider
n = 1234567892. Then:f(n) = 1+2+3+4+5+6+7+8+9+2 = 47 f(f(n)) = 4+7 = 11 f(f(f(n))) = 1+1 = 2Therefore,
g(1234567892) = 2.Each line of input contains a single positive integer
n at most 2,000,000,000. For each such integer, you are to output a single line containing g(n). Input is terminated by n = 0 which should not be processed.Sample input
2 11 47 1234567892 0
Output for sample input
2 2 2 2
import java.util.*;
public class UVA11332 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNextInt()) {
long n = sc.nextInt();
if (n == 0)
break;
while (n / 10 > 0) {
int sum = 0;
while (n > 0) {
sum += n % 10;
n /= 10;
}
n = sum;
}
System.out.println(n);
}
}
}
留言
張貼留言